

EXPERT OPINION ON AREAS OF CONTROVERSY

- Escalation and de-escalation of treatment are major issues for management of early breast cancer
- Evidence from randomized clinical trials does not cover all controversies that arise in treating individuals
- The opinion of the panel members is used to implement guidance for controversial issues
- When data are lacking, expert opinion can be used
- This is the unique feature of the St. Gallen International Consensus

International Consensus Panel 2017

<u>Chairpersons:</u> G. Curigliano (Italy), E. P. Winer (USA)

Consensus Writing Committee: G. Curigliano (Italy), H. Burstein (USA), M. Colleoni (Italy),

P. Dubsky (Austria/Switzerland), M. Gnant (Austria), S. Loibl (Germany), M. Piccart (Belgium),

M. Regan (USA), H.-J. Senn (Switzerland), B. Thuerlimann (Switzerland), E. P. Winer (USA)

Fabrice André (France)

José Baselga (USA)

Jonas Bergh (Sweden)

Hervé Bonnefoi (France)

Sara Y. Brucker (Germany)

Fatima Cardoso (Portugal)

Lisa Carey (USA)

Eva Ciruelos (Spain)

Jack Cuzick (UK)

Carsten Denkert (Germany)

Angelo Di Leo (Italy)

Bent Eilertsen (Denmark)

Prudence Francis (Australia)

Viviana Galimberti (Italy)

Judy Garber (USA)

Pamela J. Goodwin (Canada)

Bahadir Gulluoglu (Turkey)

Nadia Harbeck (Germany)

Daniel F. Hayes (USA)

Chiun-Sheng Huang (Taiwan)

Jens Huober (Germany)

Hussein Khaled (Egypt)

Jacek Jassem (Poland)

Zefei Jiang (PR China)

Per Karlsson (Sweden)

Monica Morrow (USA)

Roberto Orecchia (Italy)

C. Kent Osborne (USA)

Olivia Pagani (Switzerland)

Ann Partridge (USA)

Kathleen I. Pritchard (Canada)

Jungsil Ro (Korea)

Emiel J.T. Rutgers (The Netherlands)

Felix Sedlmayer (Austria)

Vladimir Semiglazov (Russian Fed.)

Zhiming Shao (PR China)

Ian Smith (UK)

Masakazu Toi (Japan)

Andrew Tutt (UK)

Toru Watanabe (Japan)

Timothy Whelan (Canada)

Binghe Xu (PR China)

ST GALLEN CONFERENCE: EARLY-STAGE DISEASE

- 1. Surgical Margins
- 2. Management of axilla
- 3. The "clinical value" of neoadjuvant therapy
- 4. Statistical and methodological challenges while designing studies to de-escalate therapy
- 5. Adjuvant radiation
- 6. Adjuvant therapy
- 7. Adjuvant treatment for ER+ disease
 - 1. Multi-gene signatures
 - 2. Extended endocrine therapy
- 8. Bone-modifying therapy in the early-stage setting

ST GALLEN CONFERENCE: EARLY-STAGE DISEASE

- 1. Surgical Margins
- 2. Management of axilla
- 3. The "clinical value" of neoadjuvant therapy
- 4. Statistical and methodological challenges while designing studies to de-escalate therapy
- 5. Adjuvant radiation
- 6. Adjuvant therapy
- 7. Adjuvant treatment for ER+ disease
 - 1. Multi-gene signatures
 - 2. Extended endocrine therapy
- 8. Bone-modifying therapy in the early-stage setting

ADJUVANT ENDOCRINE THERAPY WHAT MATTERS IN OUR CLINICAL PRACTICE?

- What is the risk of recurrence after 5yrs of adjuvant therapy?
- Can we reduce the risk with extended endocrine therapy?
- Can we identify patients more likely to recur using classic clinico-pathologic characteristics?
- Can we refine our baseline assumptions using multi-gene signatures?

EXTENDED ENDOCRINE THERAPY

- 1. Early-stage (I/II) ER+ patients have good overall prognosis, but >50% of recurrences occur after year 5
- 2. Previous studies have demonstrated benefit of extended endocrine therapy; however, without selection of patients, only a modest proportion of women benefited
- 3. NNT: ~25 to prevent any event; ~90-100 to prevent a distant recurrence

Trial	Duration	of Therapy (y)	N	Median Follow- up (y)	Disease- free Survival ¹	Absolute Benefit	Hazard Ratio or Rate Ratio (95% CI)
MA.17	TAM x 5y	→ Placebo x 5y → AI x 5y	2587 2583	2.5	89.8% 94.4%	4.6%	HR 0.58 (0.45-0.76) P<0.001
NSABP B-33	TAM x 5y	→ Placebo x 5y → AI x 5y	779 783	2.5	89% 91%	2%	RR: 0.68 P=0.07
ABCSG 6A	TAM x 5y	→ Placebo x 3y → AI x 3y	469 387	5.2	88.2% 92.9%	4.7%	HR 0.62 (0.40-0.96) P=0.031
ATLAS	TAM x 5y	\rightarrow No treatment \rightarrow TAM x 5y	3418 3428	7.6	74.9% 78.6%	3.7%	RR 0.84 (0.76-0.94) p=0.002
aTTom	TAM x 5y	\rightarrow No treatment \rightarrow TAM x 5y	3485 3468	10	68% 72%	4%	RR 0.85 (0.76-0.95) P=0.003
MA.17R	TAM \times 0-5y \rightarrow AI \times 5y	→ Placebo → Al x 5y	959 959	6.3	91% 95%	4%	HR 0.66 (0.48-0.91) P=0.01
1. Based on disease-free survival or cumulative risk of recurrence rates as reported in the primary publications (note that the definitions of disease-free were not identical across trials)							

1. Goss PE et al., J Natl Cancer Inst 2005;97:1262–71. 2. Mamounas EP et al., J Clin Oncol 2008;26:1965-1971. 3. Jakesz et al., J Natl Cancer Inst. 2007 Dec 19;99(24):1845-53. 4. Davies C et al., Lancet. 2013;381(9869):805-16. 5. Gray et al., J Clin Oncol 31, 2013 (suppl; abstr 5). 6. Goss PE et al., N Engl J Med. 2016

NEW DATA FROM SABCS 2016

- 1. Results from 3 extended AI randomized studies presented at SABCS 2016
- 2. In all 3 studies, primary analyses demonstrated <u>no statistically significant benefit in DFS</u> from extending AI therapy in post-menopausal patients.
- 3. Of note, results from B-42 and DATA were generally similar to previous extended endocrine therapy trials (~3-4% absolute benefit)

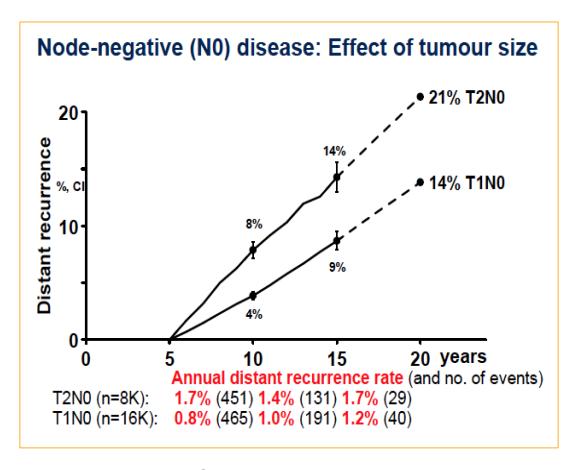
	NSABP B-42	DATA	IDEAL
Population	3966 patients who completed 5 years of AI or up to 3 years TAM followed by AI (for a total of 5 years)	1912 patients who completed 2-3 years of Tamoxifen	1824 patients who completed 5 years of Tamoxifen
Treatment	5y AI vs Placebo	3y Al vs 6y Al	2.5y Al vs 5y Al
HR	0.85 (0.73 – 0.999)	0.79 (0.62-1.02)	0.96 (0.76-1.20)
DFS	84.7% (5 years AI) vs 81.3% (Placebo)	83.1% (6 years AI) vs 79.4% (3 years AI)	87.9% (5 years AI) vs 88.4% (2.5 years AI)
P value	P=0.048 (n.s.)	P=0.07 (n.s.)	P=0.7 (n.s.)

Note, there was a statistically significant benefit in terms of prevention of <u>distant</u> recurrence
(1.9% absolute benefit, P=0.03)

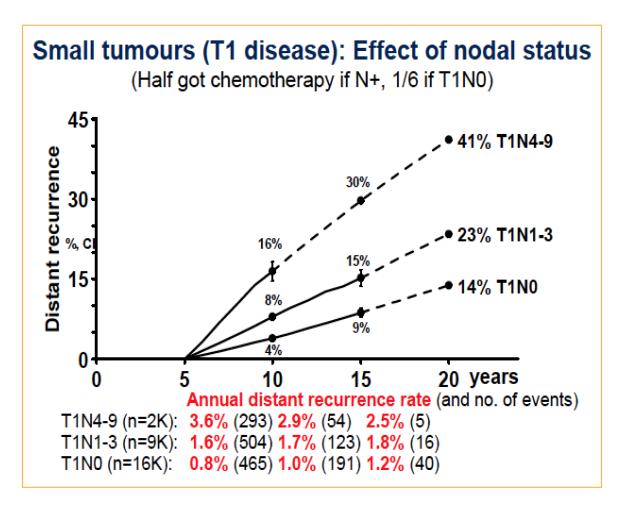
Discontinuation of AIs in all these trials was ~40% in the extended period

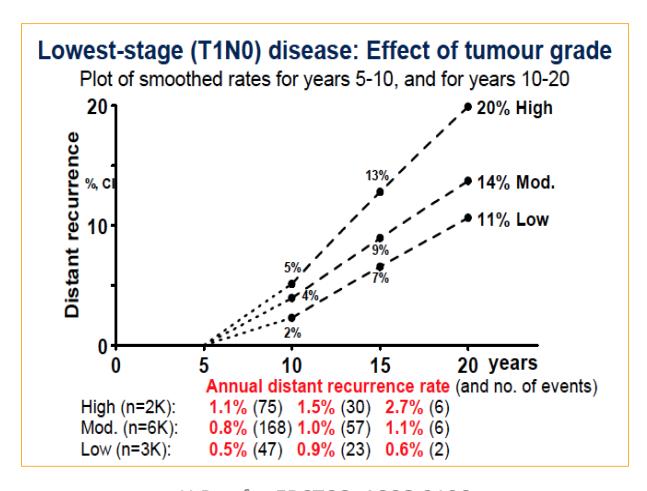
1. Mamounas E et al, 2016 SABCS. 2. Tjan-Heijnen VC et al, 2016 SABCS. 3. Block EJ et al, 2016 SABCS

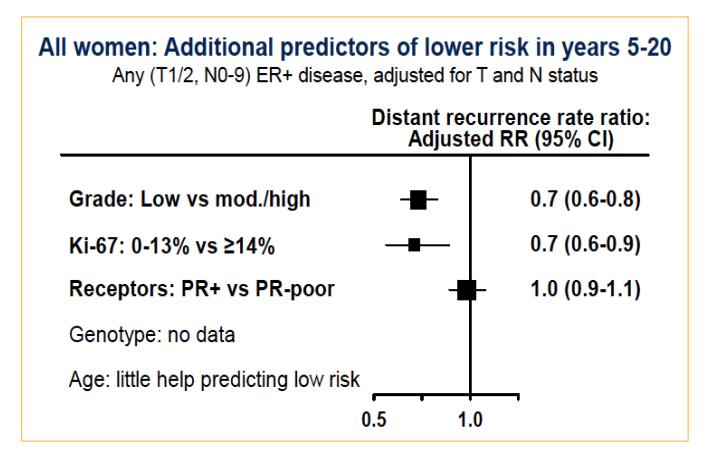
WHAT IS THE ACTUAL RISK OF RECURRENCE AFTER 5 YEARS OF ENDOCRINE THERAPY?

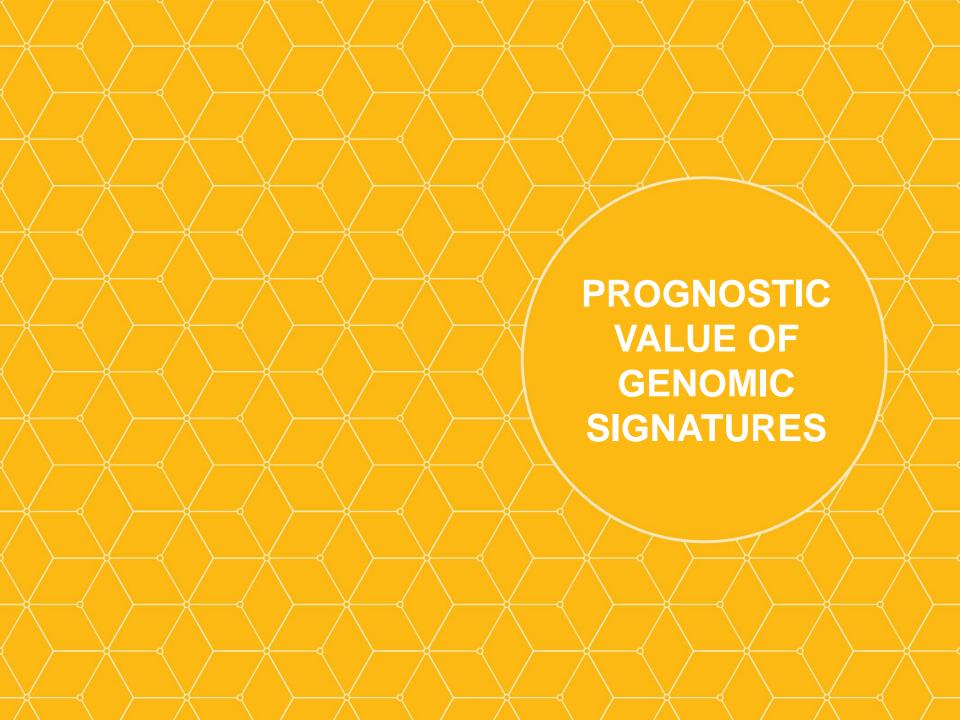

Methods: Study of prognostic factors

- Data from 91 trials on <u>each individual</u> with ER+ disease allocated only 5 years of ET*
- Analyse just the 46,000 women (n=46K) who were still alive and disease-free at year 5

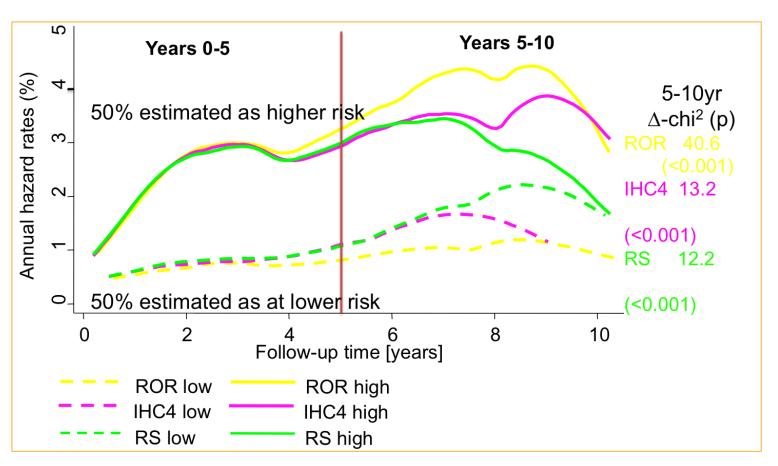

* ET was 3/4 Tam and 1/4 AI (or partly AI); analyses are only of T1 or T2 tumours (diameter ≤20 or 21-50 mm) with <10 nodes (N0-N9) & age <80 after 5 years ET


WHAT IS THE RISK OF DISTANT RECURRENCE FOR T1 N0 AND T2 N0 ?





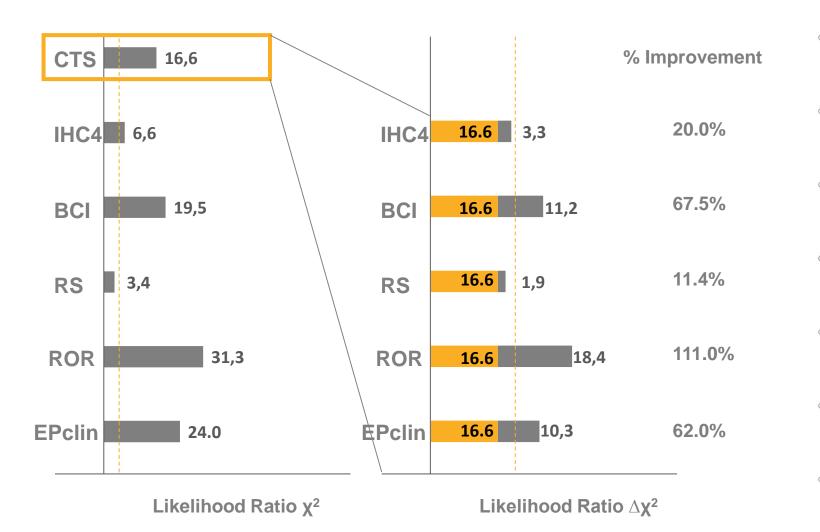
LIMITATIONS OF OXFORD OVERVIEW DATA


- Old studies
- Lack of detailed information on biomarker data
- Larger clinico-pathologic variables (?)
- Can we do better in identifying those less likely to recur using classic clinico-pathologic variables alone?

SMOOTHED HAZARD RATES FOR RS, IHC4 AND ROR IN TRANSATAC OVER 10 YEARS

(Node negative and positive combined)

Sestak et al 2013, JNCI, 105, 1504-11


WHAT IS THE ADDITIONAL PROGNOSTIC VALUE OF SIGNATURES TO CLINICAL VARIABLES?

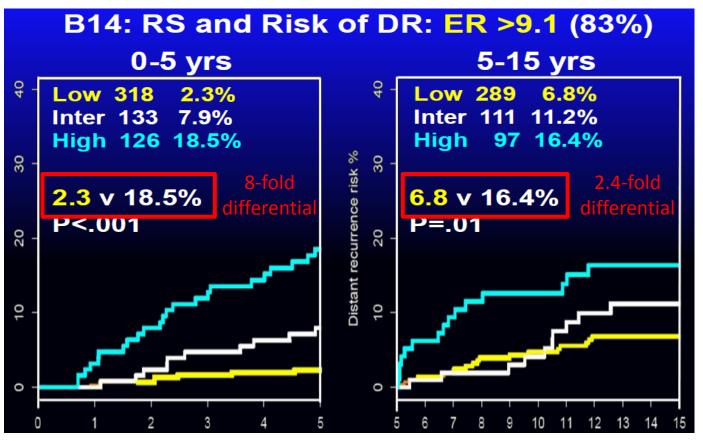
Signature	Information included		
Clinical Treatment Score (CTS)	Nodal status, grade, tumour size, age, treatment		
Immunohistochemical markers (IHC4)	ER, PgR, Ki67, HER2		
Oncotype Recurrence Score (RS)	21 genes (oestrogen, proliferation, invasion, HER2 genes)		
Breast Cancer Index (BCI)	H/I and 5 proliferation genes (Molecular Grade Index)		
Prosigna (ROR)	46 genes, proliferation score, tumour size (EU cut-offs from transATAC for N- and N+)		
EndoPredict (EPclin)	12 genes (proliferation, differentiation, oestrogen); nodal status and tumour size		

Sestak et al SABCS 2016



PROGNOSTIC VALUE YEARS 5-10 – NODE-NEGATIVE (N=591; 34 EVENTS)

PROGNOSTIC VALUE YEARS 5-10 - NODE-POSITIVE (N=227; 31 EVENTS)

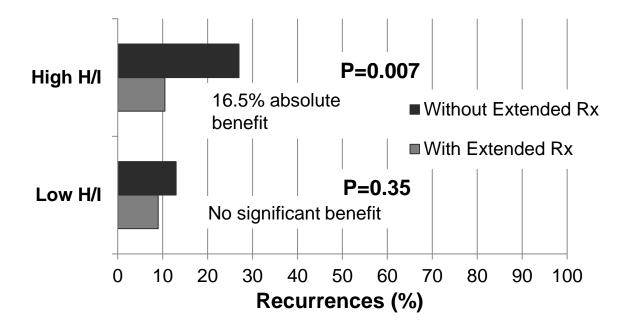


Likelihood Ratio χ²

Likelihood Ratio ∆x²

Prognostic performance of Oncotype Dx in tamoxifen arm of NSABP B14 (node negative): ER >9.1 by rt-PCR

Wolmark et al J Clin Oncol 34 (2016) 2350


OVERVIEW OF BCI PREDICTIVE

- 1. BCI Predictive (HoxB13/IL17BR ratio; H/I) has been evaluated as an endocrine response biomarker in 3 randomized control trial cohorts, including >1500 patients
- 2. Validated in the extended endocrine setting in the MA.17 study
- 3. Investigations in 2 additional RCT cohorts (Stockholm and TransATAC) provide further support that H/I is a generalizable biomarker of endocrine therapy response

BCI Predictive (H/I) Results: MA.17 RCT Cohort

- 1. In patients with High H/I, extended letrozole reduced recurrence rate significantly from 27% to 10.5% (P=0.007)
- 2. No significant reduction in patients with Low H/I (P=0.35)

Sgroi et al, J Natl Cancer Inst. 2013;105:1036-1042

SUMMARY OF BCI PREDICTIVE (H/I) VALIDATION DATA

1. H/I shown to be a significant predictor of endocrine benefit in 3 randomized trial cohorts

Study Cohort	Treatment	Predictive analysis	Interaction P value
Stockholm (n=600) ¹	Adjuvant tamoxifen vs untreated	H/I High HR: 0.35 (0.19-0.65); p=0.0005 H/I Low HR: 0.67 (0.36-1.24), p=0.2	0.003
TransATAC (n=665) ²	Adjuvant anastrozole vs tamoxifen	H/I High HR: 0.51 (0.27-0.97); p=0.04 H/I Low HR: 1.33 (0.65-2.71), p=0.4	0.004
MA.17 (n=249) ³	Extended letrozole vs placebo	H/I High OR: 0.33 (0.15-0.73); p=0.006 H/I Low OR: 0.58 (0.25-1.36), p=0.21	0.03

Results suggest generalizability as an endocrine response biomarker

^{1.} Zhang Y, et al. Clin Cancer Res. 2013;19(15):4196-205. 2. Sgroi D, et al. Lancet Oncol. 2013 Oct;14(11):1067-76. 3. Sgroi et al, J Natl Cancer Inst. 2013;105:1036-1042

TAKE HOME MESSAGES

- 1. Tumor size, nodal status and histological grade are important predictors for early and late-recurrence
- 2. Genomic tools add prognostic value to clinical variables but are not routinely used to define who should be treated with extended endocrine therapy
- 3. Data from TransATACT points to a differential prognostic value among available genomic tests. Results are intriguing and deserve validation.
- 4. BCI provides predictive information as an endocrine response biomarker

ROLE OF ADJUVANT BISPHOSPHONATES IN EARLY BREAST CANCER

- 1. Prevent and treat cancer therapy induced bone loss
 - 1. Improve bone mineral density
 - 1. Achieved reliably with bisphosphonates¹
 - 2. Reduce fractures
 - 1. Previous bisphosphonate trials underpowered
 - 2. Secondary or exploratory endpoint only in previous trials
- 2. Prevent metastasis and improve survival
 - 1. Variable individual trial results
 - 2. Recent EBCTCG meta-analysis demonstrated clear benefit in postmenopausal women
 - 1. 33% reduction in risk of bone metastases²
 - 2. 18% reduction in risk of death²

¹ Hadji P et al Ann Oncol 2011; 22:2546; ² EBCTCG, Lancet 2015

ABCSG 18 – STUDY DESIGN

Postmenopausal ER+ breast cancer Adjuvant AI therapy

(N = 3425)

Denosumab q6m median 7 doses (range 1-16)

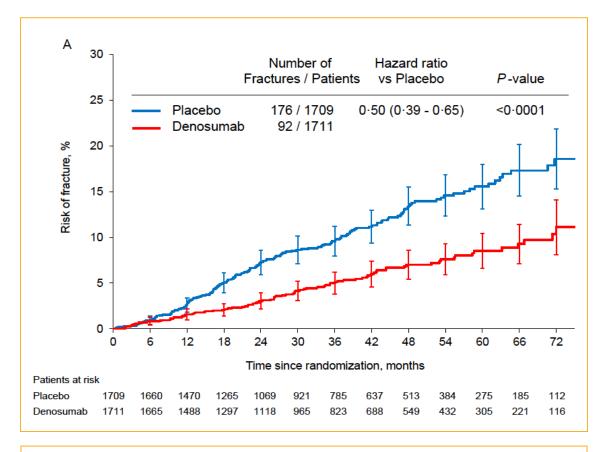
Placebo q6m median 7 doses (range 1-16)

Primary endpoint:

Time to first clinical fracture *

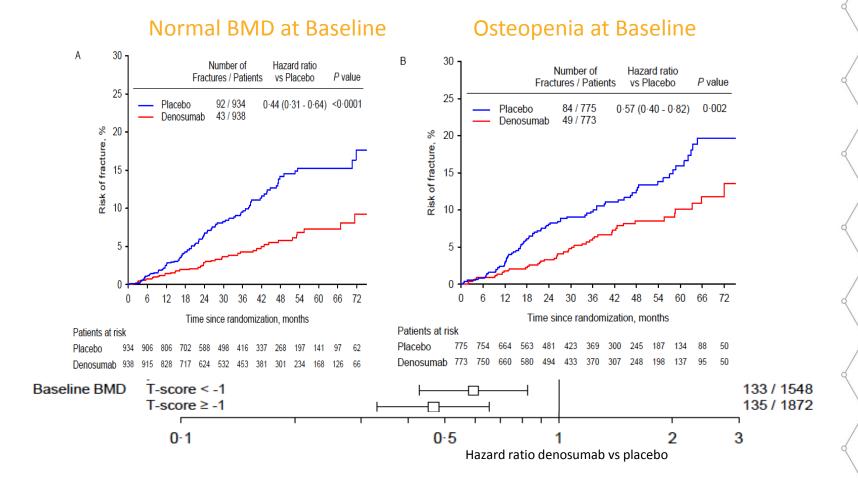
Secondary endpoints:

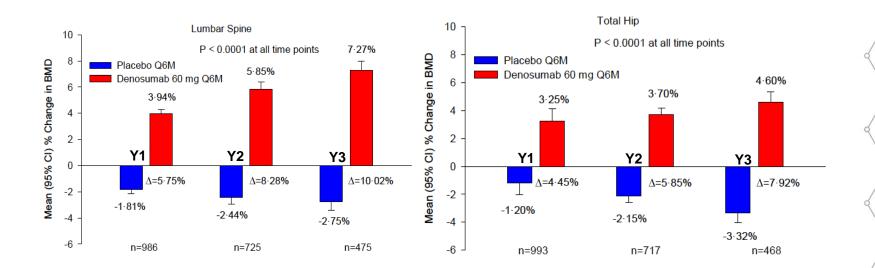
Change in BMD at 36 months


Vertebral fractures (new/worsening)

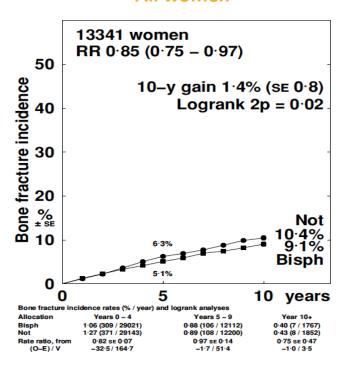
Gnant M. et al. ASCO 2015, abs

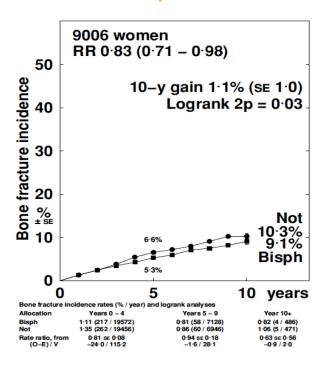
* Clinically evident fracture with associated symptoms


ABCSG 18 – RISK OF FRACTURES


Fracture rate higher than expected (15%) at 5 years

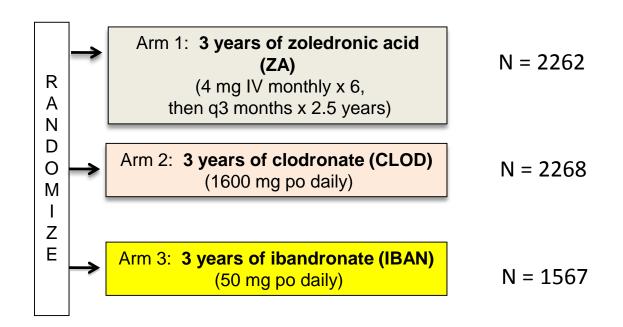
RISK OF FRACTURES BY BASELINE BMD


ABCSG 18 – BONE MINERAL DENSITY CHANGES

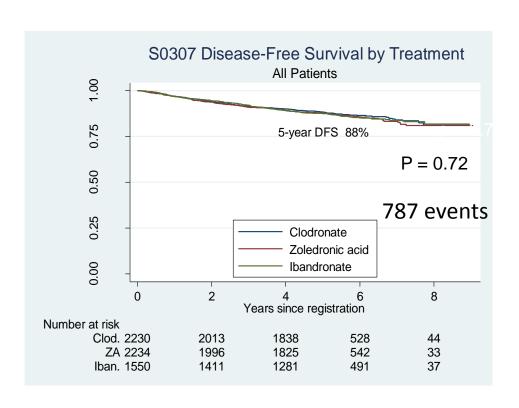


EBCTCG META-ANALYSIS – FRACTURE DATA

All women



Postmenopausal women



SAFETY DATA FROM 3 DIFFERENT AGENTS

S0307: Study Design

S0307 PRIMARY ENDPOINT: DISEASE-FREE SURVIVAL

Median Follow-up 5.4 years

No differences in DDFS or OS

No differences by ER, Her2

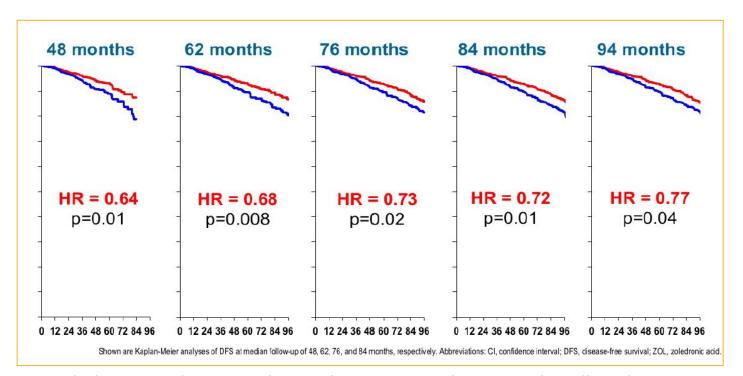
No differences in >60 years

RISKS ASSOCIATED WITH ADJUVANT BISPHOSPHONATES

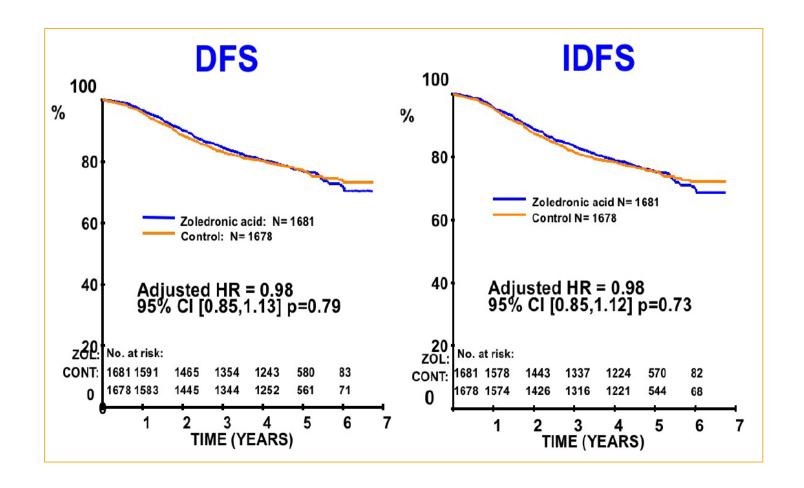
Generally well tolerated

- Low rate of troublesome GI adverse events with oral therapy
- Occasional bone pain and myalgia with IV aminobisphosphonates
- Low rate of ONJ
- Minimal rate of renal adverse events
- No reports of atypical femoral fractures in this disease setting

S0307	ONJ rate		
Zoledronic Acid	27/2094 (1.27%)		
Clodronate	7/2151 (0.31%)		
Ibandronate	11/1507 (0.71%)		
p=0.003			


¹AZURE - 26 (1.7%) ²NSABP-B34 - 1 (0.06%) ³GAIN - 2 (0.1%)

¹Coleman et al Lancet Oncology 2014; ²Paterson et al Lancet Oncology 2012; ³von Minckwitz et al. J Clin Oncol 2013


ABCSG-12: DFS ACCORDING TO FOLLOW-UP

Zoledronic Acid improved DFS when compared to control in all analyses

AZURE: DFS AND IDFS RESULTS

EFFICACY OF BONE-MODIFYING AGENTS ACROSS STUDIES

Study	Overall DFS Result (95% CI)	P Value
AZURE (n = 3359) ^[1]	0.98 (0.85-1.13)	.79
ABCSG XII (n = 1803)[2]	0.71 (0.55-0.92)	.011
ZO-FAST (n = 1065) ^[3]	0.66 (0.44-0.97)	.04
NSABP-B34 (n = 3323) ^[4]	0.91 (0.78-1.07)	.27
CLODROPLAC (n = 1069)*[5]	0.69 (0.48-0.99)	.043
GAIN (n = 2994) ^[6]	0.95 (0.77-1.16)	.59

*Analysis relates to bone metastasis-free survival.

Coleman RE, et al. N Engl J Med. 2011;365:1396-1405 Gnant M, et al. SABCS 2011. Abstract S1-2.

De Boer R, et al. SABCS 2011. Abstract S1-3. Paterson A, et al. SABCS 2011. Abstract S2-3.

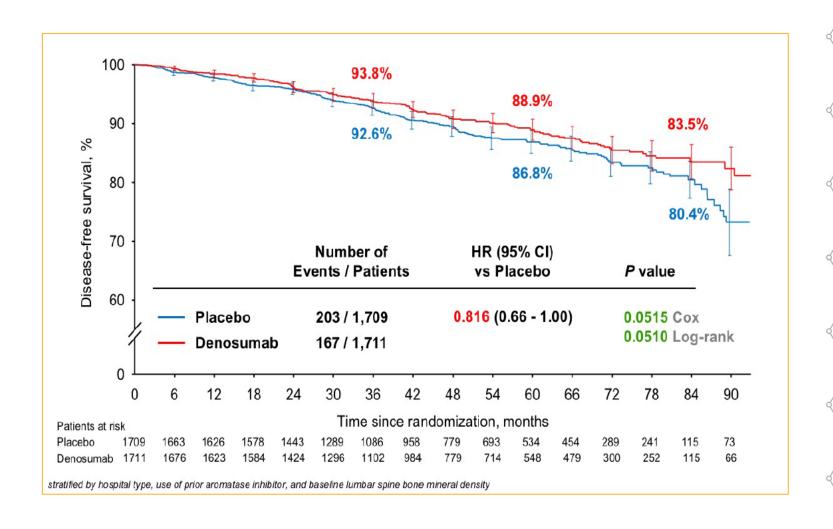
Mobus V, et al. SABCS 2011. Abstract S2-4.

Boston 2016 M. Gnant 45

CONSISTENT EFFECT AMONG POSTMENOPAUSAL WOMEN

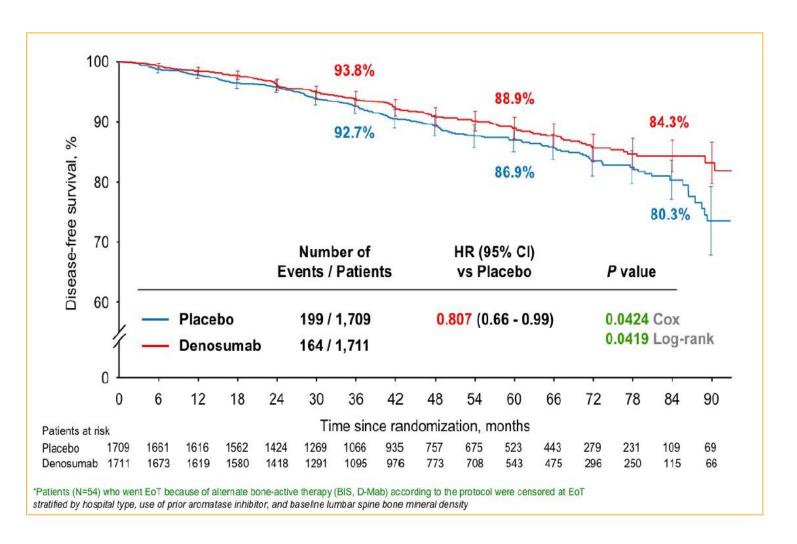
Study	"Postmenopausal" DFS (95% CI)	P Value
AZURE $(n = 1041)^{[1]}$	0.75 (0.59-0.96)	.02
ABCSG XII $(n = 1390)^{[2]}$	0.66 (0.48-0.92)*	.013
ZO-FAST $(n = 1065)^{[3]}$	0.66 (0.44-0.97)	.04
NSABP-B34 (n = 2139) ^[4]	0.68 (0.5-0.92)	.013
CLODROPLAC† $(n = 539)^{[5]}$	0.66 (0.49-0.93)	.007
GAIN (n = 1557) ^[6]	0.75 (0.49-1.14) [‡]	.17

*Includes patients > 40 yrs on goserelin; no significant effect for patients < 40 yrs. †Analysis relates to OS. [‡]≥ 60 yrs at study entry.

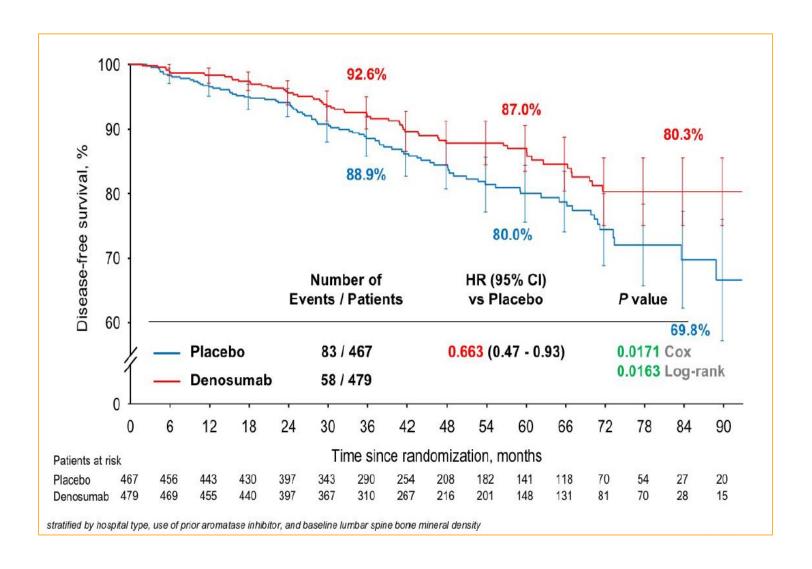

Coleman RE, et al. N Engl J Med. 2011;365:1396-1405 Gnant M, et al. SABCS 2011. Abstract S1-2. De Boer R, et al. SABCS 2011. Abstract S1-3. Paterson A, et al. SABCS 2011. Abstract S2-3. Powles T, et al. Breast Cancer Res. 2006;8:R13.

Mobus V, et al. SABCS 2011. Abstract S2-4.

Boston 2016 M. Gnant 46

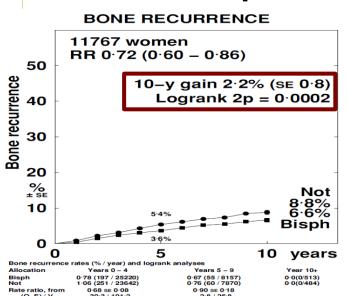


ABCSG-18 RESULTS OF THE DFS ITT ANALYSIS



ABCSG-18 SENSITIVITY ANALYSIS DFS (CROSS OVER CENSORED)

ABCSG-18 SUBGROUP TUMOR SIZE > 2CM

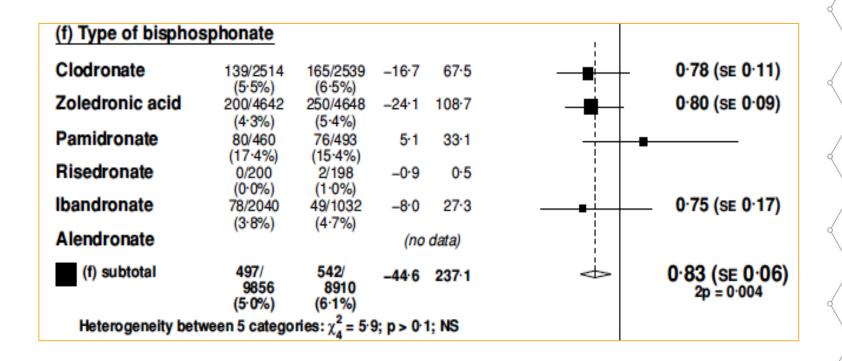


EBCTCG OVERVIEW: BONE RECURRENCE BY MENOPAUSAL STATUS

Premenopausal[‡]

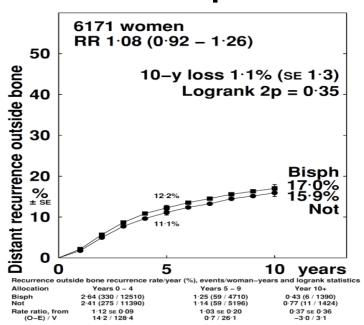
BONE RECURRENCE 6171 women RR 0.92 (0.75 - 1.12)**50** Bone recurrence 10-y gain 0.0% (SE 1.1) Logrank 2p = 0.4240 30 20 10 Bisph O O 5 years Bone recurrence Allocation Years 0 - 4 Years 5 - 9 Bisph Not 1·35 (169 / 12510) 1·54 (175 / 11390) 0·07 (1 / 1390) 0·07 (1 / 1424) 1.00 (47 / 4710) 0.69 (36 / 5196) Rate ratio, from (O-E) / V

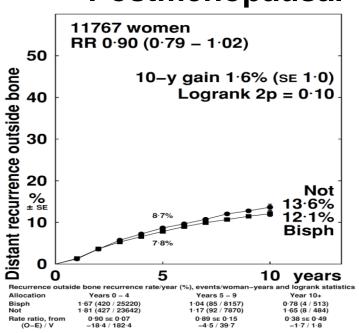
Postmenopausal



Heterogeneity between menopausal groups $\chi^2_1 = 5.6$; P=0.02

‡ includes women aged < 45 if unknown

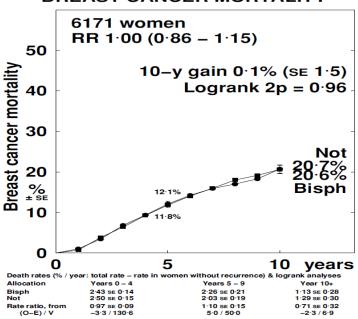

SIMILAR EFFECTS ON BONE RECURRENCE IRRESPECTIVE OF TYPE OF BISPHOSPHONATE


NON-BONE DISTANT RECURRENCE BY MENOPAUSAL STATUS

Premenopausal[‡]

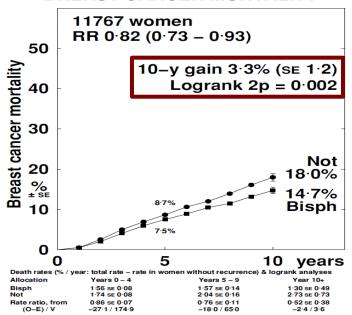
‡ includes women aged < 45 if unknown

Postmenopausal



BREAST CANCER MORTALITY BY MENOPAUSAL STATUS

Premenopausal[‡]


BREAST CANCER MORTALITY

‡ includes women aged < 45 if unknown

Postmenopausal

BREAST CANCER MORTALITY

SUMMARY OF RECOMMENDATIONS

Recommendation 1

- It is recommended that administration of bisphosphonates as adjuvant therapy be considered for postmenopausal patients with breast cancer (including patients premenopausal before treatment who have menopause induced by ovarian suppression) deemed candidates for adjuvant systemic therapy.
- The final decision of whether or not to administer bisphosphonates should be made during consultation between the patient and oncologist, taking into account patient and disease characteristics, including risk of recurrence, and weighing the potential benefits and risks (adverse effects).

Qualifying Statements for Recommendation 1

 While the EBCTCG meta-analysis¹ found benefit for bisphosphonates in all subgroups of postmenopausal patients, the absolute benefit was small. For patients with cancers assessed as having low risk of recurrence, the use of bisphosphonates may not result in clinically meaningful effect.

www.asco.org/breast-cancer-adjuvant-bisphosphonates-guideline

©ASCO and CCO 2017. All rights reserved.

